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Abstract: The current urban transport 

systems are predicted to be disrupted 

by autonomous vehicle 

(AV)technologies. The multi-sensor 

system of AVs may produce a lot of 

data, which is frequently used for 

safety and localization purposes. In 

this paper, a valuable framework for 

real-time measurement is proposed 

and shown. Autonomous vehicle (AV) 

technology is anticipated to upend the 

current urban transportation 

infrastructure. The multi-sensor 

system utilized by AVs can produce 

data, which is frequently used for 

localization and safety purposes. A 

useful framework for real-time 

measurement is suggested and shown 

in this paper. AV and LiDAR data are 

used to determine local traffic 

conditions. Fundamental traffic flow 

elements such as volume, Along with 

the traffic time-space graphs, density, 

and speed are computed. Using AV 

data for applications related to traffic 

control and furthermore related given 

in this kind of operations. The 

framework is tested using the Waymo 

Open dataset. Results provide insights 

into the possibility of real-time traffic 

state estimation using AVs’ data for 

traffic operations and management  

 

 

 

applications. 
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Introduction: 

Traffic State measurement is crucial 

to the operation of a transportation 

network. The traffic flow, density, 

and speed state variables are crucial 

inputs to different methods from 

aging and controlling traffic. 

Historically, traffic state estimation 

has been carried out by Reliable 

fixed sensors including induction 

loop detectors. Building 

autonomous vehicles (AVs) is a 

complex problem, but enabling 

them to operate in the real world 

where they will be surrounded by 

human-driven vehicles (HVs) is 

extremely challenging. The 

coexistence of AVs and HVs faces 

two main obstacles, which we have 

identified. First, an AV is unaware 

of the social preferences and unique 

character traits of a certain human 

driver, such as selflessness and 

aggression, and it is nearly 

impossible to infer these in real-

time during a brief AV-HV contact. 

Second, unlike AVs, which are 

predicted to follow a policy, HVs 

are exceedingly unpredictable and 

do not always follow a stationary 

policy. We characterize the mixed-

autonomy problem as a multi-agent 

reinforcement learning (MARL) 

problem and suggest a decentralized 

framework and reward function for 
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training cooperative AVs in order to 

address the aforementioned 

difficulties. 

The Waymo dataset displays three 

different coordinate systems: global 

vehicle, and sensor frames. 

Knowing these frames is essential to 

comprehendingtheAV'slocationandt

heitemssurroundingitundervarious 

circumstances over space and time. 

The orientation and position of the 

AV with regard to Earth are 

described by the global frame. The 

automobile Regardless of mobility 

frame is related to the vehicle itself. 

Using the Cartesian coordinate 

system, the LiDAR Spherical 

coordinate system is within the 

frame of the LiDAR sensor. 

 

 

NOTATIONS  AND ASSUMPTIONS: 

The Waymo Open Data set comprises 

a 2Dcamera and 3DLiDAR data. In 

the proposed method, we use only. 

Table 1. Variables of interest. 

LiDAR data to measure local traffic 

conditions in 2D imaging used for 

quality validation and comparison. 

The coordinate system used is based 

on the vehicle frame where The x-

axis is positive in the direction of 

travel, the y-axis is positive left and 

the z-axis is positive up. 

Three types of coordinate systems are 

presented in the Waymo dataset 

including the global, vehicle, and 

sensor frames. 

These frames are crucial in understanding the 

AV’s location and its surrounding objects in 

different contexts over time and space. 

 
 

 
 Table 1 : Notations for the equations 

 

Assumption1: 

The proposed method is lane-based. Therefore, 

only vehicles moving in the same area in a 

frequency band such as AV are considered in the 

calculations. 

Assumption2: 

Detects AV band and locations all 

vehicles moving in the same lane, we 

assume an average road width is 3.7 

meters. 

Assumption3: 

The proposed model assumes that AV 

is driving on a road section that is 

either straight or parallel to its 

constant curvature. 

Assumption4: 

AV is assumed to pass through a point 

in the middle of the road and go 

tangent to the road. Because we can't 

get information on this topic directly 

from detection outputs 

 

DATE PRE-PROCESSING: 

 

 

 

 

 

 

(Xi
j,Yi

j) Position of i th sign in jth frame detected by the AV

(x i,yi) Position of ith vehicle detected by the AV

si Spacing from the i th vehicle to its surrounding vehicle

hi Headway from the ith vehicle to its preceding vehicle

vi Spot velocity of the i th vehicle detected by the AV
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The data is initially pre-processed, 

where it is converted into a machine- 

and human-readable format, before 

doing traffic computations. The 

Natural Language Toolkit (NLTK) 

package was used to convert the data. 

All the factors that will be included in 

the tabular form are shown in Table 2. 

Data pertaining to identified bikers 

and pedestrians is eliminated. The 

only objects in the processed data 

frame are the automobiles and traffic 

signs that were detected. 

 

AV SPEED, HEADWAY, AND 

DISPLACEMENT: 

 

The AV velocity must be calculated 

relative to the nearby objects because 

it cannot be obtained directly from the 

dataset. As a result, fixed objects like 

traffic signs are used to determine 

how far the AV has moved between 

two frames. 

The calculation is performed on all 

traffic sign pairs from the 3D LiDAR 

point cloud within two frames in 

order to maximize accuracy. Denote 

M as the number of stationary traffic 

signs identified, and Xj and Yjas the x 

and y  coordinates of traffic sign i in 

the jth frame. 

For a single vehicle, its spacing is the 

linear distance to its preceding vehicle 

as expressed in Equation: 

𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = 𝑠𝑖

= √(𝑥𝑖−1 − (𝑥𝑖))2 − (𝑦𝑖−1 − (𝑦𝑖))2 

 

The vehicle’s headway is estimated as the time 

taken for the vehicle to reach the current position 

of the preceding vehicle, which is expressed in 

Equation: headway=ℎ𝑖=
𝑠𝑖

𝑣𝑖
 

 

Therefore, the positional change 

of the AV between two successive 

frames is estimated using 

immovable objects like traffic 

signs. To achieve maximum 

precision, the computation is done 

for every pair of traffic signs from 

the 2D LiDAR point cloud in three 

dimensions 

  𝑥 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝛥𝑥𝑎𝑣𝑔 = ∑  xi
j=1

− xi
jM

i=1                

(1) 

 𝑦 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝛥𝑦𝑎𝑣𝑔 = ∑  yi
j=1

− yi
jM

i=1                

(2) 

  𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑑𝑎𝑣𝑔 =

√ (𝛥𝑥𝑎𝑣𝑔)2 −  (𝛥𝑦𝑎𝑣𝑔)2      (3) 

Now denote the time-step of detection as t(0.1s), 

the AV speed and heading are computed with 

Equations (4) and (5). 

 Speed =  𝑣𝑎𝑣𝑔 =
𝑑𝑎𝑣𝑔

𝛥𝑡
                                         

(4) 

 heading change =  𝛥θ𝑎𝑣𝑔 =

tan−1(
 𝛥𝑦𝑎𝑣𝑔

𝛥𝑥𝑎𝑣𝑔
)                   (5) 

 LANEPOSITIONAL 

CONSTRAINTS: 

utilizing pre-established positional 

and directional limits, vehicles in all 

other lanes are identified and removed 

from the traffic estimation. It is 

assumed for both constraints that the 

AV is traveling down the middle of 

the lane, matching the tangent there. 

The positioning constraint may limit 

the number of vehicles to those whose 

center coordinates are inside the 
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defined lane boundaries. Each 

detected vehicle is monitored at its x 

and y locations as indicated by the 

AV. The radius of curvature can be 

either "positive" or "negative" 

depending on whether the AV is 

traveling clockwise or anticlockwise 

TRAFFIC FLOWMEASUREMENTS: 

 

 

 

STUDY LIMITATIONS    : 

The effective detection range of the 

AVs’ LiDAR sensors often vary 

depending on the sensor type and 

weather conditions. In this section, we 

test how LiDAR detection range 

affects the estimation of traffic states. 

We use data from Video 1 with 

detection radii of 60 meters and 40 

meters. The slight temporal 

aggregation in the traffic metrics that 

are displayed is what causes the 

fluctuations that are observed. These 

restrictions may have an impact on the 

number of cars that are identified, 

which may therefore have an impact 

on how representative the measured 

local traffic conditions are. As 

mentioned in Section III-D, reducing 

the number of vehicles might increase 

the effects of detection errors on the 

measured outputs because the traffic 

calculations rely on arithmetic and 

harmonic means. Long-range radar 

(LRR) data can be utilized to gather 

farther-reaching information in order 

to address this problem. The purpose 

of LRR, which has a 200-meter range, 

is to find additional cars traveling in 

the same direction as the projected 

volume, speed, and density. 

Another limitation is the dependency 

of the developed framework on the 

accurate detection of stationary 

objects to estimate the motion of the 

AV. This impedes the application of 

the methodology in road segments 

with no such stationary objects. The 

issue can be resolved with self-

sensing techniques, including 

odometer and gyroscope. Finally, the 

presented estimation method is 

limited to simple road geometries, 

namely straight and continuously 

curved lanes. If the AV turns left or 
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right or changes lanes, additional 

steps are required to correct the traffic 

state estimations. To estimate the lane 

profile, the AV is assumed to be 

traveling at the center of the lane, and 

the radius of the road curvature is 

selected manually through an analysis 

of the AV travel path before 

conducting the calculations. To 

improve the practicality of the 

presented method, other location-

based techniques could be 

investigated. Avs use a combination 

of sensors such as GPS, GNNS, 

inertial measurement units, and 

cameras for localization 

 

RESULTS: 

The developed approach is iteratively 

applied to the frameworks in four 

different sample videos collected from 

the Waymo Open observation data 

training set Dataset. All tests are done 

on the desktop a computer with an 

Intel Core i7-10700K@ 3.80 GHz × 

16 processor, 3200 MHz 2 x 16 GB 

RAM. The programming language 

used is Python3.8.8.Table3 mentions 

the four examples of videos used in 

our analysis, two of which represent 

direct path sand the two permanently 

indicate curved sections of road. 

Directly tea samples have a duration 

of 20 seconds the duration of curved 

road samples is less than 20 seconds. 

Constantly winding roads are rare in 

Waymo Open the dataset. Curved 

road samples are excerpts of full-

length sample videos. Four graphs are 

illustrated for each sample, including 

space- time, flow-time, density-time 

and velocity-time profiles(Figures2-

5). Blue on space-time diagrams 

dotted lines represent the AV 

trajectory, while red dotted lines 

represent the trajectories of other 

vehicles same band as AV. Vertical 

extension of blue AV The figure 

shows the LiDAR detection range of 

the AV, which is the assumed default 

value is 80 meters in all directions. 

The color of the extensions 

determines the AV rate where green 

means higher speed and red means 

lower speed. Traffic flow, density and 

speed calculated in Part II-F, is also 

shown on a red-green scale with 

smaller values to the red color and 

higher values associated with the 

green color. Note gaps and random 

breaks with in the plot. These are 

caused by vehicles appearing and 

disappearing while traveling near the 

edge of the LiDAR detection area. In 

the future, the study could explore 

different ways to include vehicles 

moving near the boundaries of the 

LiDAR detection zone and AV lane 

entry and exit in real-time traffic 

mode assessment. 

 

 

 

CONCLUSION: 
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In this study, we proposed a spatial 

measurement of local traffic A method based 

on LiDAR data from AV. fitness method is 

presented using the Waymo Open Dataset. 

The U.S. The goal was to develop a simple 

evaluation technique for real-time local 

traffic state variables that provide immediate 

information on congestion relief and vehicle 

routing for optimization. 

Another limitation of the LiDAR data is the 

fixed detection boundary, which can cause in 

consistent inclusion of the same vehicles. 

Vehicles traveling on the edge of the 

detection range can be included in some time 

frames and excluded in others. This 

inconsistency can result in discontinuities in 

the time series diagrams. For instance, the 

leading vehicle in Figure 2 is included in 

some frames (0-9.9s) while excluded in 

others. The impact is especially severe when 

the vehicles driving on the detection edge 

have significantly different speeds and 

spacings. 

With a higher penetration rate in the future, 

AVs may complement fixed sensors to detect 

traffic. All study different areas of traffic 

situation assessment, we the study 

investigated the estimation of basic traffic 

variables in real-time. The accuracy of the 

proposed framework remains specified as 

ground truth traffic status information not 

available Thus, as a future research direction 

the accuracy of the model can be verified 

using simulation-based techniques, while this 

paper focuses on feasibility using real data 

from the proposed method. In addition, The 

current approach can be extended to measure 

multi-lane traffic and eventually develop 

processes to control traffic data aggregation, 

imputation and forecasts using real-time AV 

datasets. The recognition ability of AVs can 

also be analyzed and their reliability as 

mobile sensors in different traffic and 

environmental conditions. If we mainly 

focused on the use of LiDAR sensors in Avs 

in this study, future work can ensure the 

feasibility of traffic estimation using other 

AV sensors including cameras and radar. By 

combining data collected from multiple 

sensors, the accuracy of traffic measurements 

should improve. 
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